An ODE to MonODEpth

Vitor Campagnolo Guizilini Toyota Research Institute

In realms where pixels dance with light's embrace, There lies a quest, profound, in cyberspace. Monocular depth, thou art the key, To unlock realms unseen, for all to see. So here's to thee, in ode we sing, To monocular depth, eternal spring. In algorithms' dance, forever we'll trace, The wonders of depth, in digital space. - ChatGPT

PackNet

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

Self-supervised depth and ego-motion estimation

PackNet

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

Packing and unpacking operations

(a) Input Image

(b) Max Pooling + (c) Pack + Unpack Bilinear Upsample

Preserve spatial information during the encoding and decoding stages

$$\begin{split} B \times C_o \times H \times W \\ \hline \textbf{Depth2Space} \\ B \times 4C_o \times \frac{H}{2} \times \frac{W}{2} \\ \hline \textbf{Reshape} \\ B \times D \times \frac{4C_o}{D} \times \frac{H}{2} \times \frac{W}{2} \\ \hline \textbf{3D Conv. (K \times K \times K)} \\ B \times \frac{4C_o}{D} \times \frac{H}{2} \times \frac{W}{2} \\ \hline \textbf{2D Conv. (K \times K)} \\ B \times C_i \times \frac{H}{2} \times \frac{W}{2} \end{split}$$

(b) Unpacking

PackNet

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

Better scalability at:

Larger network sizes (128M parameters 🚁)

Longer depth ranges

Metric Velocity Supervision

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

Scale-aware depth estimates by supervising on translation speed

Dense Depth for Automated Driving (DDAD)

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

Depth estimation driving benchmark

6 cameras with 360° coverage and high-density ground-truth up to 250m Training: 150 scenes -> 12650 samples x 6 cameras = 75900 frames Validation: 50 scenes -> 3950 samples x 6 cameras = 23700 frames

Dense Depth for Automated Driving (DDAD)

3D Packing for Self-Supervised Monocular Depth Estimation V Guizilini, R Ambrus, S Pillai, A Raventos, A Gaidon (CVPR'20)

PackNet results on DDAD (self-supervised)

Semantic Guidance

Semantically-Guided Representation Learning for Self-Supervised Monocular Depth V Guizilini, R Hou, J Li, R Ambrus, A Gaidon (ICLR'20)

Pixel-Adaptive Convolutions*

Semantic segmentation is injected into the depth network

Source of object boundaries and scale priors

*Pixel-Adaptive Convolutional Neural Networks. Su et al., CVPR 2019.

The Infinite Depth Problem

Semantically-Guided Representation Learning for Self-Supervised Monocular Depth V Guizilini, R Hou, J Li, R Ambrus, A Gaidon (ICLR'20)

Two-Stage Training: infinite depth as a dataset bias problem

1) Model is trained using all the data

Ground-plane assumption: no predictions below (dominant) ground plane

2) Train a second model on filtered dataset

Sparse Semi-Supervision

Robust Semi-Supervised Monocular Depth Estimation With Reprojected Distances *V Guizilini, J Li, R Ambrus, S Pillai, A Gaidon (CoRL'19)*

Self-Supervision + Sparse Supervision

Target supervised error reprojected to context image

 $\mathbf{x}(x, y, d_{qt})$

Sparse Semi-Supervision

Robust Semi-Supervised Monocular Depth Estimation With Reprojected Distances *V Guizilini, J Li, R Ambrus, S Pillai, A Gaidon (CoRL'19)*

Depth Completion

Sparse Auxiliary Networks for Unified Monocular Depth Prediction and Completion *V Guizilini, R Ambrus, W Burgard, A Gaidon (CVPR'21)*

Dialable Perception

Depth prediction and completion with the same model

Depth features injected into RGB features

Depth Completion

Sparse Auxiliary Networks for Unified Monocular Depth Prediction and Completion V Guizilini, R Ambrus, W Burgard, A Gaidon (CVPR'21)

Experiments with varying amounts of depth density

Prediction results improve when jointly trained

Pre-Trained Features

Is Pseudo-Lidar Needed for Monocular 3D Object Detection? D Park, R Ambrus, V Guizilini, J Li, A Gaidon (ICCV'21)

Depth estimation as a pre-training task for 3D detection

Maximize sharing of weights

Consistent improvements with more data

Pre-Trained Features

Depth Is All You Need for Monocular 3D Detection D Park, J Li, D Chen, V Guizilini, A Gaidon (ICRA'23)

Augment depth pre-training with self-supervision

Pseudo-labeled supervision works better

	ľ	Car					
Methods	Depth Sup.		BEV AP		3D AP		
		Easy	Med	Hard	Easy	Med	Hard
SMOKE [27]	-	20.83	14.49	12.75	14.03	9.76	7.84
MonoPair [48]	-	19.28	14.83	12.89	13.04	9.99	8.65
AM3D [26]	LiDAR	25.03	17.32	14.91	16.50	10.74	9.52
PatchNet [†] [12]	LiDAR	22.97	16.86	14.97	15.68	11.12	10.17
RefinedMPL [49]		28.08	17.60	13.95	18.09	11.14	8.96
D4LCN [50]	LiDAR	22.51	16.02	12.55	16.65	11.72	9.51
Kinematic3D [51]	Video	26.99	17.52	13.10	19.07	12.72	9.17
Demystifying [5]	LiDAR	-	-	-	23.66	13.25	11.23
CaDDN [30]	LiDAR	27.94	18.91	17.19	19.17	13.41	11.46
MonoEF [52]	Video	29.03	19.70	17.26	21.29	13.87	11.71
MonoFlex [53]	-	28.23	19.75	16.89	19.94	13.89	12.07
GUPNet [54]	-	-	-	-	20.11	14.20	11.77
PGD [42]	-	30.56	23.67	20.84	24.35	18.34	16.90
DD3D [1]	-	30.98	22.56	20.03	23.22	16.34	14.20
Ours	LiDAR	35.70	24.67	21.73	26.36	17.61	15.32

NuScenes test set

Methods	Depth Sup.	Backbone	AP[%]↑	$ ATE[m]\downarrow $	ASE[1-IoU]↓	AOE[rad]↓	. NDS↑	
MonoDIS [40]	-	R34	30.4	0.74	0.26	0.55	0.38	
FCOS3D [3]	-	R101	35.8	0.69	0.25	0.45	0.43	
PGD[42]	-	R101	37.0	0.66	0.25	0.49	0.43	
DD3D [1]	-	V2-99	41.8	0.57	0.25	0.37	0.48	
DETR3D [43]	-	V2-99	41.2	0.64	0.26	0.39	0.48	
DD3Dv2-selfsup	Video	V2-99	43.1	0.57	0.25	0.38	0.48	
DD3Dv2	LiDAR	V2-99	<u>46.1</u>	0.52	<u>0.24</u>	0.36	0.51	

KITTI test set

Unsupervised Domain Adaptation

Geometric unsupervised domain adaptation for semantic segmentation *V Guizilini, J Li, R Ambruş, A Gaidon (ICCV'21)*

Unsupervised semantic segmentation via self-supervised depth estimation

Real-world self-supervision + synthetic supervision

Shared depth and semantic encoder

Unsupervised Domain Adaptation

Geometric unsupervised domain adaptation for semantic segmentation *V Guizilini, J Li, R Ambruş, A Gaidon (ICCV'21)*

State of the art unsupervised domain adaptation with no bells and whistles

Improvements in depth estimation as well

Multi-Frame Depth Estimation

Multi-frame Self-Supervised Depth with Transformers V Guizilini, R Ambruş, D Chen, S Zakharov, A Gaidon (CVPR'22)

Feature matching module

Depth-discretized epipolar constraints (matching candidates)

Attention-based feature matching (self- and cross-attention between candidates)

Multi-Frame Depth Estimation

Multi-frame Self-Supervised Depth withTransformers V Guizilini, R Ambruş, D Chen, S Zakharov, A Gaidon (CVPR'22)

Sharper matching distributions

Better reasoning over photometric ambiguities

Multi-Frame Depth Estimation

Multi-frame self-supervised depth with transformers V Guizilini, R Ambruş, D Chen, S Zakharov, A Gaidon (CVPR'22)

Joint multi-frame depth and pose estimation

Better temporal consistency

Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-Motion I Vasiljevic, V Guizilini, R Ambrus, S Pillai, W Burgard, G Shakhnarovich, A Gaidon (3DV'20)

Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-Motion I Vasiljevic, V Guizilini, R Ambrus, S Pillai, W Burgard, G Shakhnarovich, A Gaidon (3DV'20)

Dense ray surface network

Closed form unprojection (ray x depth) Cosine similarity matching for projection

Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-Motion I Vasiljevic, V Guizilini, R Ambrus, S Pillai, W Burgard, G Shakhnarovich, A Gaidon (**3DV'20**)

Self-supervised depth, ego-motion, and camera model

Adaptation to different geometries

(a) Pinhole (KITTI)

(b) Catadioptric (OmniCam)

Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-Motion I Vasiljevic, V Guizilini, R Ambrus, S Pillai, W Burgard, G Shakhnarovich, A Gaidon (3DV'20)

It works even underwater!

Intrinsics Self-Calibration

Self-Supervised Camera Self-Calibration from Video J Fang, I Vasiljevic, V Guizilini, R Ambrus, G Shakhnarovich, A Gaidon, MR Walter (ICRA'22)

Unified Camera Model

Closed-form projection and unprojection operations

Only one extra parameter over the pinhole model

$$\phi(\boldsymbol{p}, \hat{d}, \boldsymbol{i}) = \hat{d} \frac{\xi + \sqrt{1 + (1 - \xi^2)r^2}}{1 + r^2} \begin{bmatrix} m_x \\ m_y \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ \hat{d}\zeta \end{bmatrix}$$

$$m_x = \frac{u - c_x}{f_x} (1 - \alpha) \qquad m_y = \frac{v - c_y}{f_y} (1 - \alpha)$$
$$r^2 = m_x^2 + m_x^2 \qquad \qquad \zeta = \frac{\alpha}{1 - \alpha}$$

Intrinsics Self-Calibration

Self-Supervised Camera Self-Calibration from Video J Fang, I Vasiljevic, V Guizilini, R Ambrus, G Shakhnarovich, A Gaidon, MR Walter (ICRA'22)

Sub-pixel calibration accuracy

Self-supervised depth from any central camera

Intrinsics Self-Calibration

Self-Supervised Camera Self-Calibration from Video J Fang, I Vasiljevic, V Guizilini, R Ambrus, G Shakhnarovich, A Gaidon, MR Walter (ICRA'22)

Full Surround Monodepth

Full Surround Monodepth from Multiple Cameras V Guizilini, I Vasiljevic, R Ambrus, G Shakhnarovich, A Gaidon (ICRA'22)

Spatio-Temporal photometric loss

Same camera, different timesteps Different cameras, same timesteps Different cameras, different timesteps

Full Surround Monodepth

Full Surround Monodepth from Multiple Cameras V Guizilini, I Vasiljevic, R Ambrus, G Shakhnarovich, A Gaidon (ICRA'22)

Scale-aware models

Known extrinsics used to learn metric depth (and pose)

Better cross-camera pointcloud consistency

Temporal

Spatio-Temporal

Extrinsics Self-Calibration

UNE 17-21, 2024

Robust Self-Supervised Extrinsic Self-Calibration T Kanai, I Vasiljevic, V Guizilini, A Gaidon, R Ambrus (IROS'23)

Joint depth, ego-motion, intrinsics, and extrinsics estimation

Multi-stage curriculum learning Further improvements to depth estimation

(a) Self-supervised learning with velocity supervision

(b) Extrinsic estimation

(c) Self-calibration via joint optimization

	(2)		E	Extrins ound t $p_{cc} \square$	ruth
Stage		Optimizati	Loss		
	depth	ego-motion	extrinsics	Photo	Pose
Monodepth Pretraining	1	\checkmark	-	\checkmark	\checkmark
Rotation Estimation	-	Fix	\checkmark	-	\checkmark
Extrinsic Estimation	Fix	\checkmark	\checkmark	\checkmark	\checkmark
End-to-end Training	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Extrinsics Self-Calibration

Robust Self-Supervised Extrinsic Self-Calibration T Kanai, I Vasiljevic, V Guizilini, A Gaidon, R Ambrus (IROS'23)

Improves over COLMAP for dynamic scenes

(a) seq:000052 A street scene at low speeds with mostly parked cars. Both methods achieve good results.

(b) seq:000016: A highway scene at high speeds with many dynamic objects. COLMAP fails while SESC still achieves competitive results.

Geometry-Guided Visual Odometry

Self-Supervised Geometry-Guided Initialization for Robust Monocular Visual Odometry T Kanai, I Vasiljevic, V Guizilini, K Shintani (arXiv, 2024)

Self-supervised depth as initialization for bundle adjustment

Optical flow refinement based on depth and ego-motion estimation

Frozen zero-shot monocular depth network as additional source of priors

Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels V Guizilini, KH Lee, R Ambruş, A Gaidon (RA-L'22)

Self-supervised depth and scene flow is an ill-posed problem

Domain transfer via real-world self-supervision and synthetic supervision Joint multi-task optical flow initialization

Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels V Guizilini, KH Lee, R Ambruş, A Gaidon (RA-L'22)

Correlation pyramid* generated from target and context images

34 CVPR 2024 Workshop — 3rd Monocular Depth Estimation Challenge (MDEC)

Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels V Guizilini, KH Lee, R Ambruş, A Gaidon (RA-L'22)

Multi-stage residual optical flow estimation

Triangulation into depth maps

Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels V Guizilini, KH Lee, R Ambruş, A Gaidon (RA-L'22)

Multi-stage depth and scene flow estimation

Triangulated depth features are used jointly with image features

Tactile Sensors

Monocular Depth Estimation for Soft Visuotactile Sensors R Ambrus, V Guizilini, N Kuppuswamy, A Beaulieu, A Gaidon, A Alspach (RoboSoft'21)

Depth estimation in a new domain: inside a bubble

Replace range sensors for object pose estimation (1-100mm ranges)

Tactile Sensors

Monocular Depth Estimation for Soft Visuotactile Sensors R Ambrus, V Guizilini, N Kuppuswamy, A Beaulieu, A Gaidon, A Alspach (RoboSoft'21)

Depth estimation in a new domain: inside a bubble

Replace range sensors for object pose estimation

(a) Pose estimation on monocular depth maps

(b) Position norm error histogram

(c) Orientation error histogram

Depth Field Networks

Depth Field Networks for Generalizable Multi-View Scene Representation V Guizilini, I Vasiljevic, J Fang, R Ambrus, G Shakhnarovich, MR Walter, A Gaidon (ECCV'22)

Implicit learning of multi-view geometry

Condition a learned latent representation* using image and camera information Decoding using only camera information

*Perceiver IO: A General Architecture for Structured Inputs & Outputs. Jaegle et al., ICLR 2022.

Depth Field Networks

Depth Field Networks for Generalizable Multi-View Scene Representation V Guizilini, I Vasiljevic, J Fang, R Ambrus, G Shakhnarovich, MR Walter, A Gaidon (ECCV'22)

Geometry-preserving 3D augmentations

Increase scene diversity during training

Enforce equivariance in the learned latent representation

(a) Virtual Camera Projection.

(b) Canonical Jittering.

 T_0'

 T_2

 $T_0^{\prime}T_2$

Depth Field Networks

Depth Field Networks for Generalizable Multi-View Scene Representation V Guizilini, I Vasiljevic, J Fang, R Ambrus, G Shakhnarovich, MR Walter, A Gaidon (ECCV'22)

Novel depth synthesis by decoding from arbitrary viewpoints

41 CVPR 2024 Workshop — 3rd Monocular Depth Estimation Challenge (MDEC)

Latent representation equivariance by design

Spherical harmonics used to encode camera information Equivariant encoding -> **invariant latent representation**

Standard decoders can be used

Depth, Light, and Radiance Fields

DeLiRa: Self-Supervised Depth, Light, and Radiance Fields V Guizilini, I Vasiljevic, J Fang, R Ambrus, S Zakharov, V Sitzmann, A Gaidon (ICCV'23)

Self-supervised photometric warping to eliminate shape-radiance ambiguity

Joint decoding of volumetric (radiance) and single-query (depth and light) heads

Depth, Light, and Radiance Fields

DeLiRa: Self-Supervised Depth, Light, and Radiance Fields V Guizilini, I Vasiljevic, J Fang, R Ambrus, S Zakharov, V Sitzmann, A Gaidon (ICCV'23)

Synergies between representations

Volumetric predictions increase diversity for single-query training

Depth predictions improve volumetric importance sampling

Towards zero-shot scale-aware monocular depth estimation V Guizilini, I Vasiljevic, D Chen, R Ambruş, A Gaidon (ICCV'23)

Metric monocular depth estimation

45

Camera embeddings used to learn scale priors

Towards zero-shot scale-aware monocular depth estimation V Guizilini, I Vasiljevic, D Chen, R Ambruş, A Gaidon (ICCV'23)

Variational latent representation

Samples from variational distribution are decoded

Towards zero-shot scale-aware monocular depth estimation V Guizilini, I Vasiljevic, D Chen, R Ambruş, A Gaidon (ICCV'23)

Zero-shot transfer across both indoor and outdoor domains

(b) DDAD

(d) NYUv2

Towards zero-shot scale-aware monocular depth estimation V Guizilini, I Vasiljevic, D Chen, R Ambruş, A Gaidon (ICCV'23)

Improvements in depth estimation by filtering out pixels with high uncertainty

Efficient pixel-level diffusion with sparse training data

Improvements over ZeroDepth (and others)

LiDAR Generation

Towards Realistic Scene Generation with LiDAR Diffusion Models H Ran, V Guizilini, Y Wang (CVPR'24)

Realistic LiDAR Generation

Latent autoencoder designed to capture LiDAR patterns

Patterns: Curve-wise compressionGeometry: point-wise coordinate supervisionObjects: patch-wise encoding

LiDAR Generation

Towards Realistic Scene Generation with LiDAR Diffusion Models H Ran, V Guizilini, Y Wang (CVPR'24)

Conditional LiDAR generation

Images / semantic maps / bounding boxes / text

52 CVPR 2024 Workshop — 3rd Monocular Depth Estimation Challenge (MDEC)

PackNet-SfM: <u>https://github.com/tri-ml/packnet-sfm</u>

DDAD: https://github.com/tri-ml/ddad

Camviz: https://github.com/tri-ml/camviz

https://vitorguizilini.github.io

tri.global/careers

Thank You!

